
1

Deadlock analysis for open shop processing systems

Christian E.J. Eggermont1, Alexander Schrijver2, and Gerhard J. Woeginger1

1 TU Eindhoven, Netherlands
2 CWI and University of Amsterdam, Netherlands

Keywords: deadlock, resource allocation, computational complexity.

1 Introduction

We consider a multi-stage open shop processing system with n jobs J1, . . . , Jn and
m machines M1, . . . ,Mm. Every job Jj (j = 1, . . . , n) requests processing on a certain
subsetM(Jj) of the machines; the ordering in which job Jj passes through the machines
inM(Jj) is irrelevant and can be chosen arbitrarily by the scheduler. Every machine Mi

(i = 1, . . . ,m) has a corresponding capacity cap(Mi), which means that at any moment in
time it can simultaneously hold and process up to cap(Mi) jobs. For more information on
multi-stage scheduling systems, the reader is referred to the survey (LLRS 1993).

In this article, we are mainly interested in the performance of real-time multi-stage
systems, where the processing time pj,i of job Jj on machine Mi is a priori unknown and
hard to predict. The Central Control (the scheduling policy) of the system learns the
processing time pj,i only when the processing of job Jj on machine Mi is completed. The
various jobs move through the system in an unsynchronized fashion. Here is the standard
behavior of a job in such a system:

1. In the beginning the job is asleep and is waiting outside the system. For technical rea-
sons, we assume that the job occupies an arti�cial machine M0 of unbounded capacity.

2. After a �nite amount of time the job wakes up, and starts looking for an available
machine M on which it still needs processing. If the job detects such a machine M ,
it requests permission from the Central Control to move to machine M . If no
such machine is available or if the Central Control denies permission, the job falls
asleep again (and returns to the beginning of Step 2).

3. If the job receives permission to move, it releases its current machine and starts pro-
cessing on the new machine M . While the job is being processed and while the job is
asleep, it continuously occupies machine M (and blocks one of the cap(M) available
places on M). When the processing of the job on machine M is completed and in case
the job still needs processing on another machine, it returns to Step 2.

4. As soon as the processing of the job on all relevant machines is completed, the job
informs the Central Control that it is leaving the system. We assume that the
job then moves to an arti�cial �nal machine Mm+1 (with unbounded capacity), and
disappears.

The described system behavior typically occurs in robotic cells and �exible manufacturing
systems. The high level goal of the Central Control is to arrive at the situation where
all the jobs have been completed and left the system. Other goals are of course to reach
a high system throughput, and to avoid unnecessary waiting times of the jobs. However
special care has to be taken to prevent the system from reaching situations of the following
type:

Example 1. Consider an open shop system with three machines M1, M2, M3 of capacity 1.
There are three jobs that each require processing on all three machines. Suppose that the
Central Control behaves as follows:

2

The �rst job requests permission to move to machine M1. Permission granted.
The second job requests permission to move to machine M2. Permission granted.
The third job requests permission to move to machine M3. Permission granted.

Once the three jobs have completed their processing on theses machines, they keep blocking
their machines and simultaneously keep waiting for the other machines to become idle. The
processing never terminates.

Example 1 illustrates a so-called deadlock, that is, a situation in which the system gets
stuck and comes to a halt since no further processing is possible: Every job in the system
is waiting for resources that are blocked by other jobs that are also waiting in the system.
Resolving a deadlock is usually expensive (with respect to time, energy, and resources),
and harmfully diminishes the system performance. In robotic cells resolving a deadlock
typically requires human interaction. The scienti�c literature on deadlocks is vast, and
touches many di�erent areas like �exible manufacturing, automated production, operating
systems, Petri nets, network routing, etc.

The literature distinguishes two basic types of system states; see for instance Co�man,
Elphick & Shoshani (CES 1971), Gold (Gold 1978), or Banaszak & Krogh (BK 1990). A
state is called safe, if there is at least one possible way of completing all jobs. A state is
called unsafe, if every possible continuation eventually will lead to a deadlock. An example
for a safe state is the initial situation where all jobs are outside the system (note that the
jobs could move sequentially through the system and complete). Another example for a
safe state is the �nal situation where all jobs have been completed. An example for an
unsafe state are the deadlock states.

2 The problems under investigation

In this article we will study safe and unsafe states in open shop scheduling systems. In
particular, we will investigate the computational complexity of the following algorithmic
questions. The most basic problem is to characterize the system states that can be reached
while the shop is running.

Problem: Reachable State Recognition

Instance: An open shop scheduling system. A system state s.
Question: Can the system reach state s when starting from the initial situation?

If we want to have the system running smoothly, it is essential to distinguish safe from
unsafe system states:

Problem: Safe State Recognition

Instance: An open shop scheduling system. A system state s.
Question: Is state s safe?

Another fundamental question is whether an open shop system can ever fall into a deadlock.
In case it cannot, then there are no reachable unsafe states and the Central Control

may permit all moves right away and without analyzing them; in other words the system
is fool-proof and will also run smoothly without supervision.

Problem: Reachable Deadlock

Instance: An open shop scheduling system.
Question: Can the system ever reach a deadlock state when starting from the
initial situation?

3

3 Basic de�nitions

A state of an open shop scheduling system is a snapshot describing a situation that
might potentially occur while the system is running. A state s speci�es for every job Jj

� the machine Ms(Jj) on which this job is currently waiting or currently being processed,
� and the set Ms(Jj) ⊆ M(Jj) − {Ms(Jj)} of machines on which the job still needs
future processing.

The machines Ms(Jj) implicitly determine

� the set J s(Mi) ⊆ {J1, . . . , Jn} of jobs that are currently handled by machine Mi; since
the machine capacities are to be respected we impose |J s(Mi)| ≤ cap(Mi).

The initial state 0 is the state where all jobs are still waiting for their �rst processing; in
other words in the initial state all jobs Jj satisfy M0(Jj) = M0 and M0(Jj) = M(Jj).
The �nal state f is the state where all jobs have been completed; in other words in the
�nal state all jobs Jj satisfy Mf (Jj) = Mm+1 andMf (Jj) = ∅.

A state t is called a successor of a state s, if it results from s by moving a single job Jj

from its current machine Ms(Jj) to some new machine in setMs(Jj), or by moving a job
Jj withMs(Jj) = ∅ from its current machine to Mm+1. In this case we will also say that
the system moves from s to t. This successor relation is denoted s → t. A state t is said
to be reachable from state s, if there exists a �nite sequence s = s0, s1, . . . , sk = t of states
(with k ≥ 0) such that si−1 → si holds for i = 1, . . . , k. A state s is called reachable, if it
is reachable from the initial state 0. A state t is said to be subset-reachable from state s, if
every job Jj satis�es one of the following three conditions:

� M t(Jj) = Ms(Jj) andMt(Jj) =Ms(Jj), or
� M t(Jj) ∈Ms(Jj) andMt(Jj) ⊆Ms(Jj)− {M t(Jj)}, or
� M t(Jj) = Mm+1 andMt(Jj) = ∅.

Clearly whenever a state t is reachable from some state s, then t is also subset-reachable
from s. The following example demonstrates that the reverse implication is not necessar-
ily true. This example also indicates that the algorithmic problem Reachable State

Recognition (as formulated in the introduction) is not completely straightforward.

Example 2. Consider an open shop system with two machines M1, M2 of capacity 1 and
two jobs J1, J2 withM(J1) =M(J2) = {M1, M2}. Consider the state s where J1 is being
processed on M1 and J2 is being processed on M2, and where Ms(J1) =Ms(J2) = ∅. It
can be seen that s is subset-reachable from the initial state 0, whereas s is not reachable
from 0.

A state is called safe, if the �nal state f is reachable from it; otherwise the state is
called unsafe. A state is a deadlock, if it has no successor states and if it is not the �nal
state f . A state is called fool-proof, if no deadlock states are reachable from it.

4 Summary of results

Consider a �xed system state s. A machine M is full in state s, if it is handling exactly
cap(M) jobs. A non-empty subset B of the machines is called blocking for state s, if

� every machine in B is full, and if
� every job Jj that occupies some machine in B satis�es ∅ 6=Ms(Jj) ⊆ B.

4

In other words, the machines in B all operate at full capacity on jobs that in the future
only want to move to other machines in B. Since these jobs are permanently blocked from
moving, the stage s must eventually lead to a deadlock; hence s is unsafe. The following
(well-known) theorem demonstrates that also the reverse statement holds.

Theorem 1. A state s is an unsafe state, if and only if s has a blocking set of machines.

Furthermore, it can be decided in polynomial time whether s has a blocking set of machines.

This implies a polynomial time algorithm for problem Safe State Recognition. There
is a fairly simple way of rewriting the Reachable State Recognition problem into
an instance of Safe State Recognition (by essentially reversing the direction of time).
This then yields the following theorem.

Theorem 2. Problem Reachable State Recognition can be decided in polynomial

time.

In strong contrast to these positive results, we show that problem Reachable Deadlock

is intractable. This is done by a reduction from the NP-hard three-dimensional matching
problem.

Theorem 3. Problem Reachable Deadlock is NP-complete, even if the capacity of

each machine is at most three, and if each job needs processing on at most four machines.

Finally we analyze two tractable special cases of Reachable Deadlock. In both cases
we translate the problem into a graph-theoretic setting. The solution of the �rst tractable
case uses a convex programming formulation and techniques from matching theory. The
solution of the second tractable case analyzes cycles in certain edge-colored graphs.

Theorem 4. If each job requires processing on at most two machines, then Reachable

Deadlock can be solved in polynomial time.

Theorem 5. If each machine has capacity one, then problem Reachable Deadlock can

be solved in polynomial time.

References

Banaszak, Z.A., and B.H. Krogh, 1990, �Deadlock avoidance in �exible manufacturing systems

with concurrently competing process �ows�, IEEE Transactions on Robotics and Automation

6, pp. 724-734.

Co�man, E.G., M.J. Elphick, and A. Shoshani, 1971, �System Deadlocks�, ACM Computing Sur-

veys 3, pp. 67-78.

Gold, M. 1978, �Deadlock prediction: Easy and di�cult cases�, SIAM Journal on Computing 7,

pp. 320-336.

Lawler, E.L., J.K. Lenstra, A.H.G. Rinnooy Kan, and D.B. Shmoys, 1993, �Sequencing and schedul-

ing: Algorithms and complexity�, Handbooks in Operations Research and Management Science,

Vol. 4, North Holland, pp. 445-522.

