
1

Competitive solutions for a dock assignment problem by
means of Lagrangian relaxation

Lotte Berghman and Roel Leus

Department of Decision Sciences and Information Management
KULeuven, Leuven, Belgium

{Lotte.Berghman ; Roel.Leus}@econ.kuleuven.be

1 Introduction

Toyota is one of the world’s largest automobile manufacturers, selling over 7.5 million mod-
els (including Hino and Daihatsu) annually on all five continents, and generating almost
130 billion euro in net revenues. Since 1999, the total warehouse space floor of the Euro-
pean Distribution Centre TPCE (Toyota Parts Centre Europe) located in Diest (Belgium)
has been expanded to 67.700 m2. Toyota’s Distribution Centre delivers to 28 European
distributors on a daily basis.

At TPCE, the warehouse has some 50 gates, each with a capacity of one trailer, where
goods can either be loaded on an empty trailer or be unloaded from a loaded trailer. Besides
the warehouse with the gates, the site also contains two parking lots, which can be seen as a
buffer where trailers can be temporarily parked. All transportation activities of uncoupled
trailers between these parking lots and the gates are done by terminal tractors, which are
tractors designed for use in ports, terminals and heavy industry. Because of the numerous
loading, unloading and transportation activities, TPCE needs a schedule specifying the
starting time and the assigned gate or terminal tractor for each activity.

Each arriving trailer, for which the planned arrival time is known, is dropped off by the
trucker at a parking lot and afterwards transported to a gate by the terminal tractor. After
unloading or loading at the gate, the trailer is transported back to the parking lot by the
terminal tractor, where it will be picked up by a trucker later on. The planning is currently
done manually. The goal of this paper is to examine opportunities for automation of this
procedure.

We model the situation at TPCE as a three-stage flexible flow shop. The facilities
are disjunctive, in the sense that each machine may process at most one task at a time.
Preemption of a task is not allowed and none of the machines has buffer storage for work-
in-process. The first stage consists in the movement of the trailer by a terminal tractor
from the parking lot to a gate, the second stage are the loading and unloading tasks and
the third stage is the transportation by a tractor back to the parking lot. Identical terminal
tractors execute both the first and the third stage. In these stages, the processing times are
modeled as being independent of the driving distance because the actual driving time of
the tractor is small compared to the time it takes the driver to follow the safety instructions
and attach the trailer to the tractor. Therefore, the processing times in the first and the
third stage are non-zero constants. The second stage is executed by a batch of identical
machines (representing the gates), so the processing time depends only on the job and is
independent of the machine. Each task of stage two has to be scheduled on exactly one
gate. Each task of stage one and three is to be scheduled on exactly one terminal tractor.

The gate assigned to a trailer is considered to be occupied also during the transportation
stages one and three, mainly for safety reasons. Consequently, unlike a standard flexible
flow shop, the ‘gate’-resources are not exclusively tied to only one stage. After loading or

2

unloading, a trailer cannot immediately be transported to the parking lot if both trac-
tors are busy. The trailer remains at the gate until a terminal tractor becomes available,
which may prevent other trailers from being loaded or unloaded there. We refer to this
phenomenon as blocking.

A detailed problem statement is given in the next section. A mathematical formulation
of the problem is provided in Section 3. The representation and the generation of a schedule
is discussed in Section 4. The algorithm presented in Section 5 is based on Lagrangian
relaxation and makes use of the formulation of Section 3.

2 Definitions and detailed problem statement

T is the set of all tasks (also referred to as activities); J is the set of jobs (or trailers),
with |J | = n. Each job j ∈ J is a vector (t1, t2, t3) of three tasks, one at each stage
(the first component is the task in the first stage, etc.). T can be partitioned as follows:
T = T 1∪T 2∪T 3 with T i the tasks of stage i (i = 1, 2, 3). A second partition is T = TU∪TL,
where the set TU contains all tasks related to a trailer that has to be unloaded, while TL

gathers all the tasks pertaining to a trailer to be loaded.
Each task t ∈ T 1 has a ready time rt. For the unloading tasks t ∈ TU , this ready time

equals the planned arrival time of the trailer. For the loading tasks t ∈ TL, rt = 0 because
it is assumed that all the goods to be loaded on the trailers are in the warehouse and that
the empty trailer is waiting on the parking lot. Each stage-two unloading task t ∈ TU ∩T 2

has a due date dt equal to the ready time and each three-stage loading task t ∈ TL ∩ T 3

has a deadline dt based on the driving time to the customer and the agreed arrival time
at the customer. Each of the tasks in these two sets also has a weight wt representing
the importance of early processing of the trailer. All transportation activities between the
parking lot and the gates have a constant duration of 1, independent of the distance. There
are τ identical terminal tractors available for both the first and the third stage, and m < n
identical gates constitute the resources in the second stage. Each machine (either a gate or
a tractor) can process at most one task at a time. The processing time pt of a task t ∈ T 2

is the time needed to load or unload the trailer at the gate.
Our problem consists in scheduling the tasks in such a way that the total weighted

lateness (or tardiness, since dt = rt) of unloading the trailers is minimized and the total
weighted earliness of the transportation activities of a loaded trailer back to the parking
space, is maximized. In this way, all incoming shipments are in the warehouse as early as
possible and all export trailers are ready for transport by a trucker as quickly as possible.

3 Mathematical formulation

We describe a time-indexed formulation, with H the planning horizon with length Hmax.
For all tasks t ∈ T and time periods u ∈ Ht, the binary variable xtu = 1 if task t starts in
time period u, = 0 otherwise, with Ht the time window of task t.

min
∑

t∈TU∩T 2

wt

((∑

u∈Ht

uxtu

)
+ pt − dt

)
+

∑

t∈TL∩T 3

wt

((∑

u∈Ht

uxtu

)
+ 1− dt

)

subject to
∑

u∈Ht
xtu = 1 ∀t ∈ T (1)

∑
(t1,t2,t3)∈J

(
xt1u + xt3u +

∑
v≤u (xt2v − xt3v)

)
≤ m ∀u ∈ H (2)

∑
(t1,t2,t3)∈J (xt1u + xt3u) ≤ τ ∀u ∈ H (3)

3

xt2,u+1 = xt1u ∀(t1, t2, t3) ∈ J ;∀u ∈ H(4)
∑Hmax

v=u+pt2
xt3v = xt2u ∀(t1, t2, t3) ∈ J ;∀u ∈ H(5)

The objective function minimizes the weighted tardiness of the stage-two unloading
tasks and maximizes the weighted earliness of the stage-three loading tasks. The tardiness
is the time between the completion of the unloading and the due date, while the earliness
is the time between the arrival at the parking lot and the deadline. The first constraint
set in the formulation requires each task to be processed exactly once, either on a gate
or by a terminal tractor. The constraints (2) ensure that in each time interval at most m
activities are executed. A gate is considered to be occupied during transportation, loading
or unloading, and blocking, where the latter refers to the time period between the end of
stage two and the start of stage three. Constraints (3) enforce the capacity of the terminal
tractors. Finally, constraints (4) and (5) implement the precedence constraints between the
three stages.

4 Schedule representation and schedule generation schemes

In line with most improvement heuristics for scheduling problems, we will not operate
directly on a schedule but rather on some representation of a schedule that is efficient and
effective for the functioning of the algorithm. After an operation on a solution (a schedule’s
representation), the new solution is transformed into a schedule by means of a schedule
generation scheme. Our schedule representation is an activity list (a permutation of the
tasks). As a task of stage two starts immediately after the corresponding task of stage
one (see constraints (4)), the tasks of stage two are not included in the list. We opt for a
so-called serial schedule generation scheme (see Hartmann and Kolisch (2000) for details).
This type of scheme can always generate an optimal schedule for a resource-constrained
scheduling problem when a regular measure of performance is considered (which is also the
case in this paper).

There are two particularities to our setting that hamper a straightforward scan of the
set of activity lists. The first is the difficulty of producing a feasible schedule; this is further
discussed in the next section. The second inconvenience is the blocking: as long as the
stage-three activity for a trailer is not executed, the assigned gate is occupied, although
stage two may already be completed. We call a permutation valid if it respects the inter-
stage precedences and if the generation scheme is able to find a free gate at each iteration
in which a stage-two task has to be planned, which means (informally) that the stage-two
and stage-three activities of each job should not be too far apart in the list.

5 The algorithm

When the capacity constraints (2) and (3) are relaxed using Lagrange multipliers (see,
e.g., Fisher (1981)), easily solvable independent job-level subproblems are obtained. The
multipliers act as prices that regulate the use of the machines. For each task, the optimal
starting time strikes a balance between these machine prices and the tardiness or earliness
of the job. The remaining scheduling problem is solved in a running time that is linear in
the number of jobs and the length of the planning horizon. The relaxed problem is solved
multiple times, and at each iteration the multipliers are updated by means of either subgra-
dient optimization or a dedicated multiplier adjustment procedure. After a predetermined
number of iterations or when the gap reaches a threshold, the optimization is halted and
we obtain a relaxed solution, which is usually not a feasible schedule. This solution should
subsequently be made feasible.

4

Verifying the existence of a feasible schedule for a set of tasks with release times and
deadlines is NP-complete in the strong sense, even on a single processor (see Garey and
Johnson (1977)). Consequently, finding a feasible schedule for the considered flexible flow-
shop problem is also NP-hard.

The two-phase heuristic approach based on list scheduling and pairwise exchange that
is presented by Tang and Xuan (2006) allows to “derive a feasible solution in most cases”.
We have adapted their procedure to our setting by rendering each permutation valid before
schedule generation, and it turns out that frequently, a feasible solution is not obtained – in
a number of instances, the algorithm enters into an infinite loop by a stepwise positioning
earlier in the list of tasks that do not meet their deadline.

We have therefore decided to proceed with the development of enumeration schemes
for activity lists, in search for a feasible solution. We construct a search tree in which each
node is equated with a permutation of the activities (only those of stages one and three).
The root node of the tree is based on the Lagrangian solution. We propose to use the
number of adjacent swaps that are needed to transform an activity list into another one
as a distance measure between the two lists. The distance between a parent node and its
child nodes in the search tree is always one, so there is only one adjacent swap needed
to transform a parent into each of its children, and the search procedure gradually moves
away from the starting solution as it explores higher-indexed levels of the tree. The quality
of each node is measured by the weighted number of jobs that is not finished before its
deadline and the total time over all jobs by which the deadlines are violated. This value
is used to assess the ‘degree’ of infeasibility of each solution. Our tree traversal strategy is
best-first. The search procedure is interrupted once a feasible schedule is found, although
it might in principle be continued in search for higher-quality feasible solutions.

We implement two enumeration schemes. In the first scheme, we only work with valid
permutations (the nodes containing invalid combinations are not generated), while both
valid and invalid permutations are examined in the second enumeration scheme. Appropri-
ate pruning rules are incorporated in order to avoid redundancy. Multiple implementation
variants are tested: the starting solution can also be a random permutation or a permuta-
tion that is derived from the formulation’s LP relaxation, and (especially for random initial
solutions), a depth-first search strategy can also be expected to exhibit a good performance.

References

Fisher, M.L., 1981, “The Lagrangian relaxation method for solving integer programming problems”,
Management Science, Vol. 27, pp. 1–18.

Garey, M.R. and D.S. Johnson, 1977, “Two-processor scheduling with start-times and deadlines”,
SIAM Journal on Computing, Vol. 6, pp. 416–426.

Hartmann, R. and S. Kolisch, 2000, “Experimental evaluation of state-of-the-art heuristics for the
resource-constrained project scheduling problem”, European Journal of Operational Research,
Vol. 127, pp. 394-407.

Tang, L. and H. Xuan, 2006, “Lagrangian relaxation algorithms for real-time hybrid flowshop
scheduling with finite intermediate buffers”, Journal of the Operational Research Society, Vol.
57, pp. 316–324.

