
1

Scheduling two interfering job sets on uniform parallel

machines with maximum criteria functions

Donatas Elvikis1, Horst W. Hamacher1, Vincent T'kindt2

1 University of Kaiserslautern, Germany
elvikis, hamacher@mathematik.uni-kl.de

2 LI, Université de Tours, France
vincent.tkindt@univ-tours.fr

Keywords: Interfering Jobs, Parallel Machines, Bicriteria Scheduling, Pareto Optimum.

1 Introduction

We consider a m uniform parallel machines scheduling problem of two jobs A and B
with nA and nB equal processing time operations, respectively. Further, we denote by
n = nA + nB the total number of operations and by pj =

p
vj
, with vj the processing speed

of machine j, the processing time of any operation scheduled on machine j.
Our goal is to minimize two maximum functions associated with jobs A and B and

referred to as FAmax = maxi∈A f
A
i (Ci) and F

B
max = maxi∈B f

B
i (Ci), respectively, with Ci

the completion time of operation i and fi an increasing function. Therefore we face to a
two interfering job sets problem, i.e. scheduling each job is done according to its own cost
function while sharing common resources with the other job. It is obvious that criteria
are con�icting and the problem is referred to as Q|pi = p|#(FAmax, F

B
max) according to the

notation presented by T'kindt & Billaut (2006).
As usual when dealing with multiple con�icting criteria, we focus on the calculation of

strict Pareto optima for FAmax and FBmax criteria. A schedule σ is a strict Pareto optimum
i� there does not exist another schedule σ̂ such that FAmax(σ̂) ≤ FAmax(σ) and F

B
max(σ̂) ≤

FBmax(σ) with at least one strict inequality. Note that each non-dominated criteria vector
(FAmax, F

B
max) is associated with at least one Pareto optimum. In this paper we focus on

the enumeration of such solutions.
Scheduling interfering job sets is a quite recent research area. First, Agnetis, Mirchan-

dani, Pacciarelli & Paci�ci (2000) introduce a job shop scheduling problem with two com-
peting players each one having its own optimization goal: this was the starting point for
interfering job sets problems. Later, Baker & Smith (2003), Yuan, Shang & Feng (2005)
and Agnetis, Mirchandani, Pacciarelli & Paci�ci (2004) study several single machine prob-
lems with two interfering job sets. The �rst problem with more than two interfering job
sets and unit penalty criteria is dealt with by Cheng, Ng & Yuan (2006) and is shown to
be strongly NP-hard. Papers dealing with identical and uniform parallel machines were
�rst published by Balasubramanian, Fowler, Keha & Pfund (2009) and Elvikis, Hamacher
& T'kindt (2009), respectively.

2 Solving the Q|pi = p|#(FAmax, F
B
max) problem

It is known that Q|pi = p|#(FAmax, F
B
max) problem can be solved by a naive approach

in O(n3AnB + nAn
3
B) time. Also note that e�cient algorithms developed by Elvikis et al.

(2009) for makespan criterion does not apply since the block property in Lemma 1 does
not hold, therefore in this paper we develop new algorithm which enumerates all Pareto
solutions of the Q|pi = p|#(FAmax, F

B
max) problem. The algorithm will start with an initial

solution where job A is sequenced before B and iteratively look for operations, with costs

2

equal to the criteria values of the current schedule, to be swapped in order to produce
another non-dominated solution.

First observe that as far as criteria on jobs are regular we only need to restrict the
search for Pareto optima to the set of active schedules (T'kindt & Billaut 2006). Con-
sequently, and due to the fact that operations are of equal size we can de�ne T =⋃
j=1,...,m {t | t = kpj , k ∈ N} as the set of timeslots numbered ascending w.r.t. comple-

tion times. Thus T = {t1 ≤ t2 ≤ · · · ≤ tn} is the set of timeslots for any active schedule
σ and minimizing criteria FAmax and FBmax is equivalent to assign operations to their com-
pletion times. In other words, the uniform parallel machines problem can be seen as a
particular single machine problem for which the sequence of completion times is �xed and
we only need to assign jobs to timeslots which makes it more particular than the problems
tackled by Agnetis et al. (2004).

Further we give de�nitions of the additional solution properties which we use throughout
the paper.

De�nition 1. Schedule σ̂ such that F̂Amax > FAmax and F̂Bmax < FBmax holds and there is
no other schedule σ̃ with F̂Amax > F̃Amax > FAmax and F̂Bmax < F̃Bmax < FBmax is called a
succeeding solution of σ.

De�nition 2. Solution σ such that fAσ(k)(tr) > FAmax, r = argminr=k+1,...,n{σ(r) ∈ B},
holds for all operations σ(k) ∈ A, with k = 1, . . . , n, is called saturated.

In other words, if any operation of A is right time shifted in σ, then it will issue a greater
criterion FAmax value. Consequently, saturated solution provides job B with the timeslots
aligned maximally to the left, i.e. with the earliest possible completion times.

We start the algorithm with a saturated solution σ minimizing Lex(FAmax, F
B
max) which

can be found by adoption of the algorithm described by Agnetis et al. (2004) for solving
1||ε(FAmax/FBmax). Let FBmax be given by operation u ∈ B sequenced in position ` in σ and
ties are broken in favor of the maximal `. Obviously in succeeding schedule σ̂ operation u
must be sequenced at some earlier position r < ` such that tr < t`.

Lemma 1. Given two succeeding non-dominated schedules σ and σ̂. Let the FBmax criterion
value for σ be due to the operation u ∈ B sequenced in position ` in σ. Then ∃v ∈ A such
that CAv (σ) < t` and C

A
v (σ̂) ≥ t`.

Lemma 2. Let v ∈ A be such that CAv (σ) < t` and CAv (σ̂) ≥ t` where σ and σ̂ are two
succeeding non-dominated solutions and t` such that fBσ(`)(t`) = FBmax with σ(`) ∈ B. Then

fAv (CAv (σ̂)) = F̂Amax holds.

Let τg be the time of the g-th smallest intersection point between two fBi functions,
i.e. τ1 ≤ τ2 ≤ ... ≤ τM with M the total number of intersection points. Notice that if two
functions fBi′ and fBi′′ overlap in some region, thus have an in�nite number of intersection
points, we only consider the point with the highest value.

Further in the paper we use the notion of Ordered Operation Sequence (OOS), de�ned by
Sg = {sg(1), . . . , sg(nB)}: such permutation of job B operations that fBsg(i)(t) ≤ f

B
sg(i+1)(t),

∀t ∈ [τg−1; τg[with τ0 = 0 holds. Besides, we refer to Tg as the set of timeslots for which
the sequence Sg does not change, i.e. Tg = {t ∈ T | t ∈ [τg−1; τg[}. It is important to notice
that we only consider at most n sequences Sg such that Tg 6= ∅. Without loss of generality
in the remainder we assume that all Sg's with Tg 6= ∅ are numbered consecutively starting
from index 1. At last, we de�ne Lt(σ) ⊆ Sg with t ∈ Tg as unscheduled OOS (uOOS), the
permutation of yet unscheduled B operations regarding a backward sequence σ.

3

Observe that both OOS's can be computed while building an initial non-dominated
solution without added time complexity since we only need to compute those valid for
timeslots tk. Moreover, Sg and Tg do not depend on the actual schedule, so they are valid
for any solution σ. On the other hand we have to manage n uOOS lists Lt(σ) which can
be done in an e�cient way as we will see later on.

Now we turn to the algorithmic side of the section and describe how succeeding solutions
are found. Let σ be a saturated strictly non-dominated schedule as described in De�nition
2. Then due to Lemma 1 there exists operation v ∈ A in position k in σ which will be moved
to a later position ` > k in the new schedule σ̂, here ` is the position of operation u ∈ B
such that fBu (CBu (σ)) = FBmax(σ) and ` is maximal. Note that both operations u and v with
their respective positions ` and k can be found in O(n) time by simple scan of the schedule.
Moreover, operation u is not sequenced in σ̂ yet, thus in the following we will describe a
procedure which �lls in the timeslot tk and schedules operation u in O(nB log nB) time.
Here we want to point out that this is not the �nal step needed to produce a saturated
non-dominated solution which answers conditions de�ned in De�nition 2, but it is crucial
in reaching one.

First note that none of the operations in B sequenced in positions after ` can �ll the
vacant position k in σ̂ since otherwise v ∈ A would be postponed more than necessary and
due to Lemma 2 increase criteria F̂Amax value. Thus only 1, . . . , `− 1 timeslots in σ̂ have to
be considered in the rescheduling process. Moreover, we do not consider other operations
in A than v which has already been shifted to position ` in σ̂. This implies that we only
need to reschedule some timeslots from t1 to t`−1 in which operations of job B in σ were
scheduled. We consider them in reverse order and split into the following two cases.

Case 1 (t`−1, . . . , tk+1). This case is quite trivial since for each timeslot tr, ∀r = `−1, ..., k+
1, the assigned operation i in σ̂ has the lowest cost value fBi (tr) among operations in the
associated uOOS sequence Ltr (σ̂). Henceforth, we only need to compare such operation
i with operation u to decide which one will be assigned to the timeslot tr in σ̂: either
operation i stays at position r if fBi (tr) < fBu (tr) or u is sequenced at position r and
i becomes unscheduled. Consequently, operation u may be updated to i as well as the
sequences Lt(σ̂), ∀t ≤ tr. This can be implemented in constant time if we use Brodal
(1996) priority queue for Lt(σ).
Case 2 (tk, . . . , t1). Assume that tk ∈ Tg and it has the smallest completion time among
all t ∈ Tg. If this is not the case, then due to the fact that Sg is the same for all t ∈ Tg we
can proceed similarly as in Case 1 and do pairwise comparison of cost functions between
operations i sequenced in position k− 1 in σ̂ and u with respect to the timeslot tk. This is
repeated until: (i) we reach timeslot tk which satis�es the assumption above and continue
with this case; (ii) �nd such tk that f

B
u (tk) ≤ fBi (tk) and sequence operation u to position

k in σ̂, thus procedure is completed or (iii) reach k = 1.
Under assumption above we have two operations that can be assigned to timeslot tk,

namely operation u and the �rst unscheduled operation i in Ltk(σ). Note that u /∈ Ltk(σ),
thus adding it to Ltk(σ) and sequencing �rst operation from the uOOS list, i.e. Ltk(σ)[1],
gives an optimal assignment to position k in the new schedule σ̂. Moreover, if Ltk(σ)[1] is
u, then procedure is completed, otherwise we have to update ` to the value of k and k to q,
the position where i was sequenced in σ, and start again with the Case 1. Note that adding
operation u to the uOOS takes constant time, whereas removing the minimum element
Ltk(σ)[1] takes O(log nB) time. Moreover, if i 6= u then all Ltr (σ) with r = q+1, . . . , k− 1
have to be updated by deleting operation i. Removing an arbitrary element from Brodal
(1996) priority queue can be implemented in logarithmic time.

Note that these two basic steps create a succeeding feasible schedule σ̂, however this
one does not necessarily satisfy conditions in De�nition 2. Hence we saturate solution σ̂ by

4

postponing all operations of A until conditions in De�nition 2 hold. Observe that this can
be done iteratively by identifying operation v ∈ A in position k such that fAσ̂(k)(tr) ≤ F̂

A
max,

with r = argminr=k+1,...,n{σ(r) ∈ B}, and then applying procedure above for rescheduling
operations in B. Operation v can be found in O(n) time by scanning schedule σ̂. Moreover,
Agnetis et al. (2004) showed in Theorem 11.3 that for the 1||#(FAmax, F

B
max) problem there

are at most nAnB iterations when some A operation i can be postponed in favor of an
earlier position for operation j in B and once j precedes i in σ there is no succeeding
schedule σ̂ with i and j order reversed. Note that these results can be easily transported
for the Q|pi = p|#(FAmax, F

B
max) problem.

Finally we have transformed the starting non-dominated solution σ to the next succeed-
ing non-dominated solution σ̂ which can be used as an initial solution for further iterations
of the algorithm.

As outlined at the beginning we know that the initial saturated lexicographical so-
lution σ can be found in O(n2A + n2B) time, whereas each iteration of the algorithm
takes O((nA + nB) log nB) time and there are at most O(nAnB) of them, thus the time
needed to enumerate all non-dominated solutions of the Q|pi = p|#(FAmax, F

B
max) problem

is O((n2AnB + nAn
2
B) log nB). Observe that due to the necessity of unscheduled ordered

operation lists for each timeslot space complexity is quadratic to the size of the problem.

Theorem 1. Algorithm solves Q|pi = p|#(FAmax, F
B
max) in O((n2AnB+nAn2B) log nB) time

with O(nAnB + n2B) memory.

Acknowledgements

The research has been partially supported by the program "Center for Mathematical
and Computational Modelling (CM)2".

References

Agnetis, A., Mirchandani, P., Pacciarelli, D. & Paci�ci, A. (2000), `Nondominated schedules for
a job-shop with two competing users', Computational & Mathematical Organization Theory

6(2), 191�217.
Agnetis, A., Mirchandani, P., Pacciarelli, D. & Paci�ci, A. (2004), `Scheduling problems with two

competing agents', Operations Research 42(2), 229�242.
Baker, K. & Smith, J. (2003), `A multiple-criterion model for machine scheduling', Journal of

Scheduling 6, 7�16.
Balasubramanian, H., Fowler, J., Keha, A. & Pfund, M. (2009), `Scheduling interfering job sets

on parallel machines', European Journal of Operational Research 199(1), 55 � 67.
Brodal, G. S. (1996), Worst-case e�cient priority queues, in `SODA '96: Proceedings of the seventh

annual ACM-SIAM symposium on Discrete algorithms', Society for Industrial and Applied
Mathematics, Philadelphia, PA, USA, pp. 52�58.

Cheng, T., Ng, C. & Yuan, J. (2006), `Multi-agent scheduling on a single machine to minimize
total weighted number of tardy jobs', Theoretical Computer Science 362, 273�281.

Elvikis, D., Hamacher, H. W. & T'kindt, V. (2009), Scheduling two interfering job sets on uniform
parallel machines with makespan and cost functions, in `Proceedings of the fourth Multidis-
ciplinary International Conference on Scheduling: Theory and Applications (MISTA 2009)',
pp. 645�654.

T'kindt, V. & Billaut, J.-C. (2006), Multicriteria Scheduling: Theory, Models and Algorithms, 2nd
edition, Springer (Berlin).

Yuan, J., Shang, W. & Feng, Q. (2005), `A note on the scheduling with two families of jobs',
Journal of Scheduling 8, 537�542.

	Scheduling two interfering job sets on uniform parallel machines with maximum criteria functions
	Donatas Elvikis, Horst W. Hamacher, Vincent T'kindt

